Stochastic Toolkit for Uncertainty Quantification in complex nonlinear systems

نویسنده

  • Michal Branicki
چکیده

1 Prliminaries 2 1.1 Basic Probability concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Stochastic Differential Equations (SDE’s) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Langevin equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Ito integral and basics of Ito calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.3 Path-wise solutions and statistics of the linear Langevin equation . . . . . . . . . . 8 1.3 Fokker-Planck equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developing the Next Generation Scalable Exascale Uncertainty Quantification Methods

Predictive modeling of multiscale and multiphysics systems requires accurate data-driven characterization of the input uncertainties and understanding how they propagate across scales and alter the final solution. We will address three major current limitations in modeling stochastic systems: (1) Most of current uncertainty quantification methods cannot detect and handle discontinuity in the pa...

متن کامل

Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network

Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...

متن کامل

Uncertainty Quantification for Stochastic Nonlinear Systems using Perron-Frobenius Operator and Karhunen-Loève Expansion

In this paper, a methodology for propagation of uncertainty in stochastic nonlinear dynamical systems is investigated. The process noise is approximated using KarhunenLoève (KL) expansion. Perron-Frobenius (PF) operator is used to predict the evolution of uncertainty. A multivariate Kolmogorov-Smirnov test is used to verify the proposed framework. The method is applied to predict uncertainty ev...

متن کامل

Polynomial Chaos for Semiexplicit Differential Algebraic Equations of Index 1

Mathematical modeling of technical applications often yields systems of differential algebraic equations. Uncertainties of physical parameters can be considered by the introduction of random variables. A corresponding uncertainty quantification requires one to solve the stochastic model. We focus on semiexplicit systems of nonlinear differential algebraic equations with index 1. The stochastic ...

متن کامل

Error Estimation and Uncertainty Quantification for non-linear CFD problems

Modern research and engineering rely on numerical simulations to predict the behaviour of fluids and some derived physical quantities of interest. These predictions are often strewn with errors and uncertainties. Numerical errors come from replacing the real physics with approximate models solved by numerical approximations, while uncertainties are due to insufficient knowledge of some input va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011